
Differential Geometry

Exercise Sheet 1

Solve Exercise 2, 3 and at least one between Exercise 1 and Exercise 4.

Exercise 1 The n-dimensional sphere Sn
R of radius R > 0 (with center in the origin 0) is defined by

Sn
R := {x = (x1, . . . , xn+1) ∈ Rn+1 | ||x|| = R} ,

where || · || is the Euclidean norm.

The n-dimensionall ball of radius R > 0 (with center in the origin 0) is defined by

Bn
R := {y = (y1, . . . , yn) ∈ Rn | ||y|| < R} ⊂ Rn .

1. For j = 1, . . . , n + 1, we consider U+
j := {x ∈ Sn

R | xj > 0} and U−j := {x ∈ Sn
R | xj < 0}. Define

φ±j : U±j → Bn
R ⊂ Rn as follows:

φ±j (x) = (x1, . . . , xj−1, xj+1, . . . , xn+1) .

prove that φ±j has a smooth inverse and {(φ±j )−1} is a smooth atlas with 2(n + 1) charts.

2. Let N = (0, . . . , 0, R) ∈ Sn
R be the North Pole. The stereographic projection from N is the map

φN : Sn
R \ N → Rn that maps each p = (p1, . . . , pn+1) ∈ Sn

R \ N to the intersection point

between the line joining N and p and the hyperplane {xn+1 = 0} ⊂ Rn+1 (identified canonically

{xn+1 = 0} with Rn).

(a) Prove that φN : Sn
R \ N → Rn is a diffeomorphism and the following holds:

φN(p) =
R

R− pn+1 (p1, . . . , pn) .

Similarly, let S = (0, . . . , 0,−R) ∈ Sn
R be the South Pole, the stereographic projection from S is

the map φS : Sn
R \ S → Rn that maps each p ∈ Sn

R \ S to the intersection point between the

hyperplane {xn+1 = 0} ⊂ Rn+1 and the line joining S and p.

(a) Prove that φS : Sn
R \ S→ Rn is a diffeomorphism and the following holds:

φS(p) =
R

R + pn+1 (p1, . . . , pn) .
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(a) Prove that φS and φN have smooth inverses and that {φ−1
S , φ−1

N } is a smooth atlas of charts

for Sn
R.

3. Conclude from general principles that the two atlases described above are compatible.

Exercise 2 Suppose that M1, . . . , Mk are smooth manifolds of dimensions n1, . . . , nk respectively.

Prove that M1 × . . .×Mk is a smooth manifold of dimension n1 + . . . + nk.

Exercise 3 Which of the following linear spaces intersect transversally ? Explain your answer.

1. The xy plane and the z axis in R3;

2. The xy plane and the plane spanned by {(3, 2, 0), (0, 4,−1)} in R3;

3. The plane spanned by {(1, 0, 0), (2, 1, 0)} and the y axis in R3;

4. Rk × {0} and {0} ×Rl in Rn (Depends on k, l, n);

5. Rk × {0} and Rl × {0} in Rn (Depends on k, l, n);

6. Rk × {0} and the diagonal in Rk ×Rk;

7. The symmetric (At = A) and skew-symmetric (At = −A) matrices in M(n).

Exercise 4 Let n, p ∈N with n ≥ p, and M ⊂ Rn. Consider the following statements:

(a) (Local definition via straightening) For every x ∈ M there exists a neighborhood U ⊂ Rn with

x ∈ U, a neighborhood V of 0 in Rn and a smooth diffeomorphism f : U → V such that

f (U ∩M) = V ∩ (Rp × {0}).

(b) (Local definition via implicit function) For every x ∈ M there exists a neighborhood U of x ∈ Rn

and a smooth map f : U → Rn−p which is a submersion in x and such that U ∩M = f−1(0).

(c) (Local definition via graph) For every x ∈ M there exists a neighborhood U ⊂ Rn of x, an

identification via a linear map Rn = Rp ×Rn−p, an open subset V ⊂ Rp and a smooth map

f : V → Rn−p such that U ∩M is the graph of f .

(d) (Local definition via parametrization) For every x ∈ M, there exists a neighborhood U ⊂ Rn if

x, a neighborhood of V ⊂ Rp of 0 and a smooth map f : V → Rn such that f (0) = x, f is an

immersion in 0 and f is a homeomorphism of V in U ∩M.

We say that M ⊂ Rn is a smooth submanifold of dimension p if it verifies the statement (1). Prove that

all the statements above are equivalent, following this strategy:

2



1. Statement (a) implies Statement (b)

2. Statement (a) implies Statement (d)

3. Statement (d) implies Statement (a)

4. Statement (b) implies Statement (a)

5. Statement (c) implies Statement (d)

6. Statement (b) implies Statement (c)
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Solutions to Exercise 4 Recall the following results:

Theorem 0.1 (A.2 Local inversion Theorem). Let U ⊂ Rn be an open set, and let f : U → Rn be a Ck

function, where k ≥ 1. If x ∈ U is a point where the Jacobian matrix D f (x) is invertible, then there exists
an open neighborhood V of x in U and an open neighborhood W of f (x) in Rn such that f : V → W is a Ck

diffeomorphism.

(Here, the Jacobian matrix D f (x) is the n× n matrix whose (i, j)-th entry is ∂ fi
∂xj

(x), where f = ( f1, . . . , fn)

and x = (x1, . . . , xn). The invertibility of D f (x) means that its determinant det(D f (x)) is nonzero.)

Here is the translation in English and LaTeX:

Let p, q ≤ n be fixed in N, and let k be an element of (N − {0}) ∪ {∞, ω}. Recall that a local

diffeomorphism of Rn at a point x0 is a diffeomorphism from an open neighborhood of x0 to an open

neighborhood of x0 that sends x0 to itself. The maps (x1, . . . , xp) 7→ (x1, . . . , xp, 0, . . . , 0) from Rp to

Rn, (x1, . . . , xn) 7→ (x1, . . . , xq) from Rn to Rq, and (x1, . . . , xp) 7→ (x1, . . . , xr, 0, . . . , 0) from Rp to Rq,

where r ≤ min{p, q}, are respectively an immersion, a submersion, and a map of constant rank r. The

following results state that these examples are, locally and modulo local diffeomorphisms, the only

ones.

Theorem 0.2 (A.5 (Local Normal Form Theorem for Immersions)). Let U be an open set in Rp containing
0, and let f : U → Rn be a Ck function that is an immersion at 0 with f (0) = 0. Then there exists a Ck local
diffeomorphism ψ of Rn at 0 such that, in a neighborhood of 0, we have

ψ ◦ f (x1, . . . , xp) = (x1, . . . , xp, 0, . . . , 0).

Theorem 0.3 (A.6 (Local Normal Form Theorem for Submersions)). Let U be an open set in Rn containing
0, and let f : U → Rq be a Ck function that is a submersion at 0 with f (0) = 0. Then there exists a Ck local
diffeomorphism φ of Rn at 0 such that, in a neighborhood of 0, we have

f ◦ φ(x1, . . . , xn) = (x1, . . . , xq).

Let us show that (a) implies (b). If x, U, f are as in (1), then we can assume that f (x) = 0. Let f1, . . . , fn

be the components of f , and let g : U → Rn−p be the map with components fp+1, . . . , fn. Then g is a

C∞ submersion such that g−1(0) = U ∩M.

Let us show that (a) implies (d). If x, U, V, f are as in (1), then we can assume that f (x) = 0. Let

W = V ∩ (Rp × 0). Let f−1|W : W → U ∩M be the restriction of f−1 to W = V ∩ (Rp × {0}). Then

f−1|W is a C∞ immersion at 0 that sends 0 to x, and is a homeomorphism between W and U ∩M.

Let us show that (d) implies (a). If x, U, V, f are as in (4), then by the local normal form theorem for

immersions (Theorem A.5), we can assume (after possibly restricting U and V) that there exists a C∞

diffeomorphism ψ : U →W for some open neighborhood W of 0 in Rn such that ψ ◦ f (x1, . . . , xp) =

(x1, . . . , xp, 0, . . . , 0) on V. In particular, ψ(U ∩M) = ψ ◦ f (V) = W ∩ (Rp × {0}).
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The fact that (b) implies (a) can be shown in a similar way, using the local normal form theorem for

submersions (Theorem A.6).

The fact that (c) implies (d) is immediate, since if x, U, V, f are as in (3), then we can assume that

x = 0 and f (0) = 0, and the map F : y 7→ (y, f (y)) is then a homeomorphism from V to U ∩M that is

a C∞ immersion at 0 with F(0) = 0.

Finally, let us show that (b) implies (c). Let x, U, f , f1, . . . , fn−p be as in (2), and assume that x = 0.

Without loss of generality, we may assume that the matrix [ ∂ fi
∂xj+p

(0)]1≤i,j≤n−p (i.e. the submatrix of the

Jacobian matrix of f at 0 corresponding to the last n− p columns) is invertible.

Let pr1 : Rp ×Rn−p → Rp be the projection onto the first factor. Let F : U → Rp ×Rn−p be the map

defined by F(y) = (pr1(y), f (y)). Then the differential of F at 0 is invertible. Thus, by the inverse

function theorem (Theorem A.2), F is a C∞- diffeomorphism in a neighborhood of 0. Its inverse is a

map of the form y 7→ (pr1(y), G(y)) for some C∞ function G : W ⊂ Rn → Rn−p from a neighborhood

W of 0 in Rn. Thus, after possibly restricting U, we find that U ∩M = f−1(0) = F−1(Rp × {0}) is the

graph of G .
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