## Differential Geometry <br> Exercise Sheet 5

Exercise 1 Let $\mathcal{A}: \mathcal{T}^{r}(V) \rightarrow \mathcal{T}^{r}(V)$ be the alternating mapping, prove the following:

1. $\mathcal{A}(\phi \otimes \psi \otimes \theta)=\mathcal{A}(\mathcal{A}(\phi \otimes \psi) \otimes \theta)$;
2. $\mathcal{A}(\mathcal{A}(\phi \otimes \psi) \otimes \theta)=\mathcal{A}(\phi \otimes \mathcal{A}(\psi \otimes \theta))$;
3. Use these facts to deduce that the exterior product is associative.

Exercise 2 Let $\phi_{1}, \ldots, \phi_{r}$ be elements of $V^{\star}=\Lambda^{1} V$. Show that they are linearly indipendent if and only if $\phi_{1} \wedge \ldots \wedge \phi_{r} \neq 0$

Exercise 3 Prove that the volume of the parallelepiped of $\mathbb{R}^{3}$ whose vertex is at the origin and whose sides from this vertex are the vectors $v_{i}=\left(x_{i}^{1}, x_{i}^{2}, x_{i}^{3}\right)$ with $i=1,2,3$ is in fact the determinant of the matrix $\left(x_{i}^{j}\right)$.

Exercise 4 Compute the expression for $\Omega$ on $S^{2}$ (with the induced metric of $\mathbb{R}^{3}$ ) in terms of the coordinates given by:

1. stereographic projection;
2. spherical coordinates $(\rho, \theta, \phi)$ with $\rho=1$.

Exercise 4 Show that if $D$ is a domain of integration on a manifold, then

$$
\int_{D} f=\int_{\bar{D}} f=\int_{D} f .
$$

Exercise 5 Using (Boothy Chapter VI, Remark 2.7) integrate on $M=\mathrm{S}^{2}$, the unit sphere of $\mathbb{R}^{3}$, the function $f$ giving the distance of a point on $M$ from the plane $x^{3}=-1$. Argue that we may use as $D_{1}$ and $D_{2}$ the upper and lower hemispheres.

