Differential Geometry Exercise Sheet 6

Exercise 1 Suppose that Δ is a distribution on M and suppose that \mathcal{J} is the collection of 1-forms ϕ on M which vanish on Δ . Prove that Δ is in involution if and only if $d\mathcal{J} = \{d\phi \mid \phi \in \mathcal{J}\}$ is in the ideal generated by \mathcal{J} .

Exercise 2 Let $M = \mathbb{R}^3$ and determine which of the following are closed and which are exact:

- 1. $\phi = yzdx + xzdy + xydz;$
- 2. $\phi = xdx + x^2y^2dy + yzdz;$
- 3. $\theta = 2xy^2 dx \wedge dy + z dy \wedge dz$.

Exercise 3 Show that the following is true for every $\phi \in \Lambda^r(M)$:

$$d\phi(X_1,\ldots,X_{r+1}) = \sum_{i=1}^{r+1} (-1)^{i-1} X_i \phi(X_1,\ldots,\widehat{X}_i,\ldots,X_{r+1}) + \sum_{i< j} (-1)^{i+j} \phi([X_i,X_j],X_1,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots,X_{r+1}) + \sum_{i< j} (-1)^{i+j} \phi([X_i,X_j],X_1,\ldots,\widehat{X}_i,\ldots,\widehat{X}_i,\ldots,X_{r+1}) + \sum_{i< j} (-1)^{i+j} \phi([X_i,X_j],X_1,\ldots,\widehat{X}_i,\ldots,\widehat$$

Exercise 4 Let $\mathbb{S}^2 = \partial \overline{B}_3$ and $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$. Calculate $\int_{\mathbb{S}^2} \omega$ in two ways:

- 1. using Stokes Theorem
- 2. without using Stokes Theorem

Exercise 5 Suppose that *D* is compact regular domain in \mathbb{R}^2 , and *P*, *Q* are smooth real functions on *D*. Prove the following (Green's theorem):

$$\int_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dx dy = \int_{\partial D} P dx + Q dy \, .$$