Differential Geometry Exercise Sheet 7

Exercise 1 Let S^2 be the unit sphere, oriented by its outward normal. Show that if two unit-speed parametrized curves α and β in S^2 have the same signed geodesic curvature for all s, then they are equal up to a rotation of S^2 . (Hint: show that the Darboux frames agree up to a rotation).

Exercise 2 Given the parametrized curve (helix)

$$\alpha(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \quad s \in \mathbb{R},$$

where $c^2 = a^2 + b^2$.

- 1. Show that the parameter *s* is arclength.
- 2. Determine the curvature and torsion of α .
- 3. Determine the osculating plane of α .

Exercise 3 Let $\alpha : I \to \mathbb{R}^3$ be a parametrized curve (not necessarily by arclength) and let $\beta : J \to \mathbb{R}^3$ be a reparametrization of α by arclength s = s(t). Let t = t(s) be the inverse function of s and set $d\alpha/dt = \alpha', d^2\alpha/dt^2 = \alpha''$, etc. Prove that

- 1. $dt/ds = 1/|\alpha'|$ and $d^2t/ds^2 = -\langle \alpha', \alpha'' \rangle/|\alpha'|^4$.
- 2. The curvature of α at $t \in I$ is

$$\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}.$$

3. The torsion of α at $t \in I$ is

$$\tau(t) = -\frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{|\alpha' \times \alpha''|^2}.$$

Exercise 4 Let

$$\psi(x_1, x_2) = (x_1 \cos x_2, x_1 \sin x_2, x_2)$$

be a parametrization of the helicoid.

- 1. Compute the mean curvature *H* and Gauss curvature *K* of the helicoid.
- 2. Find the asympotic curves and the lines of curvature of the helicoid.