Differential Geometry

Exercise Sheet 7

Exercise 1 Let S^{2} be the unit sphere, oriented by its outward normal. Show that if two unit-speed parametrized curves α and β in S^{2} have the same signed geodesic curvature for all s, then they are equal up to a rotation of S^{2}. (Hint: show that the Darboux frames agree up to a rotation).

Exercise 2 Given the parametrized curve (helix)

$$
\alpha(s)=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c}\right), \quad s \in \mathbb{R},
$$

where $c^{2}=a^{2}+b^{2}$.

1. Show that the parameter s is arclength.
2. Determine the curvature and torsion of α.
3. Determine the osculating plane of α.

Exercise 3 Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a parametrized curve (not necessarily by arclength) and let $\beta: J \rightarrow \mathbb{R}^{3}$ be a reparametrization of α by arclength $s=s(t)$. Let $t=t(s)$ be the inverse function of s and set $d \alpha / d t=\alpha^{\prime}, d^{2} \alpha / d t^{2}=\alpha^{\prime \prime}$, etc. Prove that

1. $d t / d s=1 /\left|\alpha^{\prime}\right|$ and $d^{2} t / d s^{2}=-\left\langle\alpha^{\prime}, \alpha^{\prime \prime}\right\rangle /\left|\alpha^{\prime}\right|^{4}$.
2. The curvature of α at $t \in I$ is

$$
\kappa(t)=\frac{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}{\left|\alpha^{\prime}\right|^{3}}
$$

3. The torsion of α at $t \in I$ is

$$
\tau(t)=-\frac{\left\langle\alpha^{\prime} \times \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right\rangle}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|^{2}}
$$

Exercise 4 Let

$$
\psi\left(x_{1}, x_{2}\right)=\left(x_{1} \cos x_{2}, x_{1} \sin x_{2}, x_{2}\right)
$$

be a parametrization of the helicoid.

1. Compute the mean curvature H and Gauss curvature K of the helicoid.
2. Find the asympotic curves and the lines of curvature of the helicoid.
