Differential Geometry Exercise Sheet 9

Exercise 1 Let \mathbb{R}^+ with the metric $||t_h|| = h^{-1}(|t|)$ for every $h \in \mathbb{R}^+$ and $t \in T_h \mathbb{R}^+$ where we identified $T_h \mathbb{R}^+$ with \mathbb{R} as usual. Show that $\exp_h : T_h \mathbb{R}^+ \to \mathbb{R}^+$ is given by the formula $\exp_h(t) = he^t$.

Exercise 2 Show that \mathbb{R}^n and \mathbb{S}^n_R are complete with respect to their standard Riemannian metrics.

Exercise 3 A subset *U* of a Riemannian manifold *M* is said to be convex if for each $p, q \in U$, there is a unique (in *M*) minimizing geodesic from *p* to *q* lying entirely in *U*. Show that every point has a convex neighborhood, as follows:

1. Let $p \in M$ be fixed, and let W be a uniformly normal neighborhood of p. For $\varepsilon > 0$ small enough that $B_{2\varepsilon}(p) \subset W$, define a subset $W_{\varepsilon} \subset TM \times \mathbb{R}$ by

$$W_{\varepsilon} = \{(q, V, t) \in TM \times \mathbb{R} : q \in B_{\varepsilon}(p), V \in T_{q}M, |V| = 1, |t| < 2\varepsilon\}$$

Define $f: W_{\varepsilon} \to \mathbb{R}$ by

$$f(q, V, t) = d(\exp_q(tV), p)^2.$$

Show that f is smooth. [Hint: Use normal coordinates centered at p.]

2. Show that if ε is chosen small enough, then $\frac{\partial^2 f}{\partial t^2} > 0$ on W_{ε} . [Hint: Compute f(p, V, t) explicitly and use continuity.]

Exercise 4 Let $M \subset \mathbb{R}^3$ be a compact, orientable, embedded 2-manifold with the induced metric.

- 1. Show that *M* cannot have $K \le 0$ everywhere. [Hint: Look at a point where the distance from the origin takes a maximum.]
- 2. Show that *M* cannot have $K \ge 0$ everywhere unless $\chi(M) > 0$.

Exercise 5 Determine the Gaussian curvature *K* of the surface $S \subset \mathbb{R}^3$ of equation $x^2 + y^2 = (\cosh z)^2$, and calculate:

$$\int_{S} K d\mu$$
 .